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ABSTRACT

Numerical studies of the initial boundary-value problem for *be semi- 0-

linear wave equation

Utt - Uxx + u- 0

subject to/ periodic boundary conditions u(t,O) - u(t,21), ut(tO) - ut(t,2w)

'and initial conditions u(O,x) - u0 (x), ut(O,x) - v0 (x), where u0 (x) and

v0 (x) satisfy the same periodic conditions, suggest that solutions ultimately

return to a neighborhood of the initial state u0 (x), v0 (x) after undergoing

a possibly chaotic eyolution.

<--ZT this paper~n appropriate abstract space .is considered. In this space

a finite measure is constructed. This measure is invariant under the flow

generated by the Hamiltonian system which corresponds to the original

equation. This enables one to verify the above returning property.

ANS (MOB) Subject Classifications: 35L70, 28D05, 58F11

Key Words: Semilinear wave equation, initial boundary-value problem, periodic

boundary conditions, invariant measure
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AN MNARIAMT MEASURE FOR THlE EQUATION U1tt - x + U3 o

L. Friedlander

0. Introduction .

During the Sixth I. G. Petrovskii memorial meeting of the Moscow Mathematical Society

in January 1983 Professor V. Z. Zakharov proposed the following problem. Numerical

experiments demonstrated that the equation

(0.1) utt - Ux + u3 
- 0

with periodic boundary conditions u~tO)- u(t,2t), ut(tO) - (t,2w) possesses the .

"returning" property, i.e. solutions appear to be very close to the initial state u(0,x) =

u0 (x), ut(0,x) = v0 (x), where the initial functions satisfy the above boundary conditions,

after some time of rather chaotic evolution. The problem is to explain this phenomenon.

According to the classical Poincar6 theorem every flow which preserves a finite measure has

the returning property modulo a set of measure zero. The aim of this paper is to build

such a measure for the flow

*(t)(Uo(x), vo(x)) - (u(t,x), v(t,x))

where ultx) is the solution of (0.1), v(tx) ut(tx), where the solution u

satisfies the initial data u(Ox) = uo(x), ut(Ox) vo(x). The equation (0.1) can b .:.

rewritten as a Hamiltonian system r ut - 6H/6v Accession For

(0.2) v - -8/fuNTIIS GRA&I
DTIC TAB

with the Hamiltonian Unannounced
Justification

(0.3) R(u,v) f"w(v2/2 + u/2 + u4/4)dx

Our starting point is the desired formula By
Distribution/

S(0.4) f ,(u,v)du(u,v) - f (u,v)e- (u v) I du(x)dv(x) Ay(0.4)Availability Codes
xes1  Avail and/or

for some class of "good" functionals P. Dist Special

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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The right-hand side of (0.4) is the partition function. It can be determined by

finite dimensional approximations (2.3). oughly speaking the measure A is the -

*canonical symplectic measures dudv multiplied by the function e- of the miltonian

and 1 invariant under the flow (0.2).' S) verp the correct definition of the dM

involves same technical problems and the expression I dufd does not have any meaning

without the factor e 1a . The Hamiltonian H is the sum of '..'

Id (U) - J0(u /2 + u 4 /4)dx and H2 " o(v 2 /2)d, ,a ( ) - 1 (u ) 2 9 (v •

so the mesure di is the Cartesian product of the measures

du -. 1 fdu(x) and dAs2  a~' Idy(x)

The ap1  is correctly defined by finite dimensional distributions P(Xl,...,Xk.

d~i(u(x) (u(x1 )....,U(l.k)) I M) - Npx,C)

which are proportional to partition functions

* (0.5) fc u(x * ()d

which are calculated in Section 2. In order to formulate the result we introduce m

notation. Let x < y be two real numbers. (x2 sy,vis) is the solution of the equation

O 3 - U in the segment [x~y] with the boundary conditions U(x) - C, U(y) - f. Let

h (xCgy'V) fY_(U(xCgy,nhz)/2 + VU4 (xCsy,nrs)/4Ids-

min{ (u 2 /2 + u4/4)d I u(x) - C, u y) - ,.'
.. %.. .%,

and let D(xly,n) be the regularized determinant of the operator, see (4]

(0.6) - d2 /ds 2 + 3U 2 (x, y.o,z)

In the segment [x,y] with the Dirichlet boundary conditions. The operator (0.6) in the

operator of second variation of the functional " -

xY(,2 + u4/4)da 1 u(x) C, u(y) *"% '
;Ix 1/2 m ,

in the neighborhood of the extremm U. Then

(0.7) p(xC) " c4x) exp{- -h I(x ,Cjx+1  +C1)}"
:D(x,1  , 14 1+ ,+) ..

-2- 17'
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lbS umetimen ist dntewmAed free the Condition

an& is equal to

(00 (2w)k/" sk (x 3 - 1/2

with em constat a. -we messa=. &A. IIs absolutely cotinuous; with respect to the

classical Wiener msusel so Its support beloegs to the space ipP, 0 <~ a 1/2. After

replacing the functonl Kima) With j (%t;/2)dii the construction will I~sA as exactly to

the classical Mienox M Iaue lb. 0i2  Is a realisation of the abstract Wiener measure

and It will he described In aection 3.

In Section I we Investigate the determinant of the operator (0.6). In particular we

proW46 the formula

(0.9) det(A-1 + NO1) - de 0  )stI (+ A -iF(a)),

1 Ar 0£ to the operator -62/ds2 with the Dirichiet boundary conditions and rca) is a

nommegtive meoth function. lbts deterninants oc £o + V(x) and A.are e*ual to

eop-c1-) Par C(s) Ise the C - functio, of an operators det(Z + A; 7(x)) Is wall

defined beesuse the operator A sncer 0 A-I 4Y1 . tbe formula (0.9) in not used

isamw conetructions but we think It Is Interesting by itself. in Section 2 we calculate

the partition function (0.5), in setioln 3 we give the correct definition of the masure

Sad finally In Section 4 we prows the main resulte

fteaven. 2be measure dp io invariant under the flow (0.2).

1. Vhe deteminant at the Sturw-Liouwille operator with the Diriahlet conditions.

We inIIIIstigate properties of the functional deterninante by finite dimensional

approuamatione. lb. key leae Is

L~w 1. Let F(R) 61 CO 0,a3. # , and let A0 be the aperator -d2 /4x2  with the

Dirloblet conditions. Consider (U-I) x (U-I) matrices



p i 2 -1 0...0.2 -1 2 -1,... 01
- •............ and f flj :::

an 
f

0 0.....: 2:

whore"P

G(J/N) + rj () if i

07(j/3) + r( 1  if ± - +1"

- B((j-1)/3) -- ) r I£ i = - -""

o if li-il > I

a + 20 1 and

1131 VAX,, r ( )' - 0

Than

)det( + m-+8 f-

Proof. Consider the orthonormal basis sk(x) m /2/a sin(i kx/a) of the eigen-

functions of the operator A. 8 Ao - Yk with Xk
= w2k2/a2, k - 1,2,... Denote by

~ ~ ~k /a k - ,2......Deote..

*NO the scale of Sobolev spaces which are generated by A; 1/ 2  ,k(x),l \ a/2. The

operator 53 is defined on CO-1i its elgenvalues

s) in 32

the corresponding eigenvectors a2 2

"-" (.. . ) with ( ='2/a sin(v ks/N), ku - 1,...,-1 .

ek (eki "ek N-1e

We normalize &V) by the condition

(N) 2
1 2  

aN-1 *)12 1

Let 1 be the space CN3 1  with the norm 1" and let h; be the same space with the

nre.yl! 2 2
oorm Now we introduce the interpolation operator I. I IN L "0,a' and

2
the restriction operator JW t L2 (0,&, £

-4-
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A. k

± ()

4t 0 if k -

No split the segment (0,a) into N equal parts by the points 0 X0 (N I*

at a - ja'N. The igis the operator of trigonometrical interpolation of the values

at xjl iJ" - rjiW. where PN is the ortho-projector onto the subepee spanned by

and

% rVG -(OWaN)f ... *G((U-1)a/M))

First of all we notice that the norm of IN and JR as operators which map hi into K:

and H! onto h; correspondingly are bounded by constants which do not depend on U

because

I < A,)(N) (w~ k/2N)2/in(W k/2N) -C ,2/4 ki

Consider the finite-dimensional operator

I iU~ :L 2 1,] L2 0l

clearly o o T- Vi h pc 1 o ula prtr mle h

de(+)-det(I+ 8 fnU

assertion of the lease see (53. We split the proof of convergence into the following

steps. The operators

(I) Tv are uniformly bounded in the space LOA2,N) of linear operators L2 + g:.

(ii) TN + T in the space L,(L 2 ,L 2  with the strong topology. Let *be a trigo-

nometrical polynomial. Then

Pdi5 f4 - VF(301# + 8j(1p)x#

Y - '.)k(x)# A;c-pk)F(x)4

The second and the fourth terms on the right hand side of (1.1) converge to 0 uniformly

. .. . . . . . . . ..
*.*~P *.. .%

.... p ~ ..%
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with respect to U when ki~ Operators i6') P have orthonorval basnis of

o/gonfunctione Bzjx). Te corresponding eigenvalues are equal to

0 /4 2sin2 ( J/25)) - a2 (w2j2) /( 0 if j C k-1 and

0 if j)0 Ic

therefore the third term in (I.!) converges to 0 when 9 . a. nd k is fixed. Let

[fer3 - r (Cx)1*Cx) n (y ,...y.

Then.....

* sF(ja/U)*C a/N) + r j*Cla/U) * SP]r(ja/U)*(C:)+1)a/U) '-."."

+ + ,. 1*((J+t)w/ ) - +(j,/1f)(Ja/U)

and liuM.M soily I7 U 1 -o hs (~D-rFI*oi ~ Further, (r. - i)7$ 0

when N and V24 J i4 if N is sufficiently large. So the first ter on the right

hand side of (Z.1) converges to 0 when R * -. Caoining the results above we obtain

that T.N# + ". The set of T i is bounded and trigonometrical polynomials are dense in

L2j hence T + T in strong topology.

(III) TN + ? in the space LCL,.), by virtue o (i), (ii) and Banach-fteinhaus

theorm.

(iv) TV T in the space L(aH2), a > 0, by virtue of (iii) and the compactness

of the imbedding 1! C-+ L2 .

The space L(*n,3f,) belongs to yl(e) when a < 1, see [6]. Bence T T in

Yl(N.), 0 ( 5 ( 1.

0

Lmme 2. Let F(x) 6 C2(0,a] and let AWx) be the solution of the equation

A"(x) - F(x)A(x)

with the boundary conditions .-.

A(a) - 0, 3'(a) - -Wea

where .. . 2,3,..., satisfies the difference equation
V

(U2/a2 )(AU) 2 0) + - VCCU-v ,/U)V+1 V P

-6- r
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00

Then

CU) (U~~ (N) () )

(No) Lt AW M(-V)l/U) and C (N R ( - R M.Then

(1.2) ( 2 /a 2 )(R(N) - 2R(N) + R~y) - ?((N-v)a/N)R(M) + bN
v+1 vD v-1 V V

and

(1.') U 2 / 2)C~"~- c~( ) ((N-v)a/N) EV0 C(N) + b(N)

with R(N) Of R,(N) -( + O(N-3 ) and b(N) - O(-)uniformly with respect to V.9
U0  Uj V

clearly C0 are bounded by the solutions of the equation of the type (1.2') with

r((v-v)a/N) , b(N) and CCE) replaced by C1 - suplrP(x)I, C2/U n C3/U respectively.

Bence R(N) are bounded by the solution of the following difference equation
V2

(2 /a2 )() - r(N + r(N)) . CU() + C INu 2r -o) 0 () CI
CU/ )r+ 1  V "1 1r 2 a , 1  = 3 '!

The general solution of this equation is

r(N) 2 C/( + a [X] +B x.)]

with I t C4 /V 4... and X(N)X(M) - 1. According to the initial conditions
+-

(U) (U) 2 MU (N) (U) (U) 2
a + 0 C /~ x. +8 0 x C IN

Hence

(U) M 13 2 (N)~ 2U (N) -1%
a -((C 3 A )IN - C5/N)/WA + 1) ),N B O(U

Therefore

r 4C 5 /N+ C (I+C /U) I/U-C C IN and R 0(N1

Theorem 1. Let r(x) e C2 (O~s] and let A(x) be the solution of the equation

A''(X) - F(x)A(x) *-

with the boundary conditions

'()-0, A'(a) -1-/a

Then

det(I+h r) -AM0

-7-
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Proof. Let U dag(7(a/ ),...,((U-1)a/M)) be the diagonal matrix. By Lime I

det(IA1 F) - 118. i ti1+ .

2 -1 ... 0 "1 2+&21(a/W)/3 2 -1 ... 0

-1 2 ... 0 -1

, dt dot ........ I.... ............. ......
........... 0 -1

0 0 ... 2 0 ......... .-1 2+a FU-1)a/M)/'

l% 1r tI'det DN •

above we have used the relation

-1 2 ...0

0 0 ...2

which can be proved easily.

By elemntary transformations the matrix D can be transformed into

V1 -1 0 ... 0

0 v 2 -1 ... 0

0 0 0

with

(1.3) vj =2 +a2F(ja/)/ 2 
-

1 /j.I v - 2+a2F(a/M)/ 2 .

Our aim is to find NUIvl...vy_. Let

1 ,-v* . ,,-i,, v 1 .-+ A ,. -

it follows from (1.3) that

0 U I2 /a2 )(A .N) 2 ( A ) F((N-va/l&()A(2 )(V+I - % +V-1

A( ) -0, AM -Ix.

S ..

ISa

2* %M



The value

DN"-1 -%

converges to k( 0) when N * by Leom 2.* Tbe theorem is proved.

Now we shall prove the formula (0.9). Let us remind the definition of the determinant

of a positive unbounded operator k. Assume that A-0 e6 for some positive a. one can

define the function

which is regular In the half-plane fles > 0. In som cases (e.g. if A is a pseudo-

differential oporator) this function has the msofo rphic continuation. It may happen

that 0 is a regular point of this C - function. In this case we say that A has a

determinant and

det Ak xC-()

This definition is a generalization of the finite-dimesional determinant.

Theorem 2. Let S ), co > 0 be a positive operator in a separable Hilbert space H

let *-0 6y for soms 0. 0(<0(<1 and dot 8 be defined. Let T bea bounded

operator. Then there exists a constant C which depends upon cc and I TI only, such

that dt A(C) - detcl+.CT) is defined when cje < C and is equal to dot 8 det(Ic$ST).

Proof. One has the following integral representation on the strip 0 < Res < 1 see

-a sins -3 erIs~i~t~~

if 9 < ,/ITI we can change the order of summation and integrations

(1.4) A 19(c) - si9-*~ 3 ~ t3C(tZ+B) 'T (tr+s) ft

I% Lot us show that all term on the right hand side of (1.4) are nuclear operators and

estimate their Y, norms which will be denoted by jI.I. One has .4P

-9-
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(tl+S)- TI k(tI+S) ,IH 4 *IS61 IE(t14S)- TI (tI+S) ,S'l

(a(1 a~ tc-1 if t c (1-0)/o
0~

c c0/(t+c)0 if t < c 0 (1-0)/d

pqqTherefore

Z -1 k -1
t (tlS) T(ti+S) dtl ii

k I k;+-e
4 IllIll *1 ITI {lOO(l-Rez) ck +l

(1 1-a -1 l-k+aI-Rez+ 0(1-0) (Rez+k-a)c

Thus the series (1.4) is - convergent when E < c /ITI and it defines the y1 I valued

regular function on the strip 0-1 < Rez < 1. Hence C (Z) has the meromorphic
AWC

extension to the half-plane Rez > a-I and 0 is a regular point of this function:

I k * - k -1C' (0) CS(0) 1 (-I) e I" Tr{U(tI+) t+S)-' }_dt:CAWC k-i0

Note that

d [(ti+S) I -~ _E k- (tI+S) -1T)i CtI+S) -1 jtI+S) -1TI -
i-a -

* Hence

-1 k 1 ]d-1 k
Tr{(tl+S) TI (tI+8) I-- Trf~tI+S)ITI

k dt

and

C' 0)- '0)- 1 (1 k+1 ek a d -1 k
I(C0) CS(0 'k-I(' i- Jo 0 TrC(tI+S) TI dt

k -I) k -k-~ (-T) Tr log(I+ES 'T)

Thus

det A(e)/det S -exp{-(C' (0) -CSOI exp Tr log(I+cS T)

-det(I+CS T)

Corollary. Let S be the same operator as in Theorem 2 and let T be a non-negative .

bounded operator. Then detCS+T) is defined and

-10-
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det(54Y) - dot S det(+S )

irof. Nte that 949T )o Co for evey a 10 0- goI we can apply Them= 2 U times

If R is sufficiently large and obtain

det(W9T) - dot aI I~ dat(14U-1(9frj51 ) 1 T)

the product I In the last formla is equal to the det(I+U1'f), as follows from the

identity

(.)det(14 I1  )det(1462 (a" 1! I I) - det(Z.(6 1 9 ~2' 6-T).

In order to prove this identity weintroduce I - 1-IT and obtain

CZI5 I g?)(Z1I+ 1Y e ) -1) - I1 R 1 +1 2 (Z+C IR)- I + 1 92 R(1401IR) R

-1 2- 21 2 1 1 2.

Now (X.5) follows from the wall known formula

det(I+ki)det(I4&2) - det(I+A1)(141 2)

with Al A2 f eY1 .g. sea (5).

Formula (0.9) follows from the corollary. note that

-2s%
C A (Z) - We/) C(2C) and dot ho - (1/a)6

00

where CWs Is the Riann" C - function.

2. Calculation of the partition function

(2.1) Io,~~i xp(- JYCu;/2 + u4/4)da} IT lu(s)
UW)c zOOy)
U(Y)n

Let us split the interval [x,yI into 9 equal parts x - a0o < ( 1 ... <xy y. Consider

the finite-dimensional approximation of 8

SN-Jexp(-z" h(a/DCj 1,C ))at ... at.~

with a Cx to a, C n the definition of the function h Is given in the

Introduction. The invariance of the equation us, a u3 under the transformation

u(s) 5 U u(S a) leads us to the homogeneity property

p.



(2.2) h(a/M, E..,) = N3h(a, J. 1/N /W) • .N.

Therefore

8 N N-
1 
f exp-N3[ha,C/W, 1 ) N-2

(2.3) "- .
+ h(a,L ,n/NM] d} 1 . t... I

We can apply the Laplace method to the integral in (2.3). The function 1(t.. ... W-) in

the square brackets has the unique stationary point .
-1W-

to = N-1 U(x, 9y,Vnx+ja/}4) .

j
This point is the point of its strong minimum.

(N1 (2) )/2D- /N(N')/2. -* I ..... _ )% (2ID +0{N
1
) v::""

where

DN N- )

By the homogeneity property (2.2)

3 o3
N Z(4,..% 0 N h(Na,/Hn'W) Wag-n)

and

DN = N 
- 

N det11)1,...,_
NNLN =

with

",~~ ~~~~ E h(a/MA J_ lj j _.J =1  -lot = t .

Finally

= (2;)(N-1)/2L; 12-h(a,,I) (1+0(N-))

Proposition 1. When N +

N N-1 -1 2
ooa. (N /a )det(+340 U (xF0y

r
nz))(1+o(1))

Corollary.t

lim(2wa)(I"N)/2NN/2S - (detlI+3A1U2(x,;y,;lz))1" /2 .

N •** *-* %3

The expression on the right hand side of the last formula will be called the partition

function S.

-12-7
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Proof of Proposition 1. Let LIJ - O . . . Iron the definition o1 3 it

foldwe that

-2h I I 32h 1 1

, j I j O 
4.

L -L 82 h ( 1I

LIi - 0 when i-jI> 1 ":

a). Calculation of Ljj. By the definition of the function h t
,1 

1 
2a2  g'(C I C, It D

)T a u J( -1 It J+ 112 ) U

where u is the solution of the ler-Lacrange equation ' u3  for the energy

functional, with the conditions u(-T) - u(O) - C. u(T) - By the forwmla for

the second variation

I " rv ' + 3uv 2 1 "

-1T 0
where u U( , .le , +t W ), v is the solution of the equation

, - 3 u 2 V, v (T ) - v(-r ) - 0, V (O ) I
* 0

Integrating by parts and taking into account the relation u 40' we obtain

L - v'(-O) - v'(+O) - - -v' ](O) •

Let us split v into the am of v0  and w:

v(2.5 3(9 l)2V OI w' - 3u w 312 1 l)2IV I V o() V o(-T) " (-r) - w(O)

(2.5) o. 

.w(r) O, V (0) 1

The first equation in (2.5) has the solution

o (z) - .h V(T - IzI)/sh * , a - I* • -

The solution of the second equation in (2.5) has the representation

(2.6) w(s) - 3Z. _(-1)J+ 3Ku2 0K(u2  - (C1 )12 .v

where K is the inverse to -d2/dx2  with sero conditions at the points *T and 0. It

is an integral operator with the kernel

* 1 
"". 

.".%- 

**

e-..-



{ IiT - iyl)/r if lXI 'C hi5 sign x - sign y

K(X,y) - lyiCTr - lxi )/r if lxi > lyi, sign x - sign y

a if sign x 0sign y

The series (2.6) is asymptotic with respect to r - 0 because K is of order r. nence

-Ewl](O) (3X 2  W ~1) ) - 3 J-(-khsT (-xd 0(r 3 )

Further,

- 2ctsr2 2 2~ 3 c

Finally,

(2.7) L + 2 2(11)2T + 0(r3 ).

b). Calculation of L- 1 . 1 . By definition

2

2~~ ~ (Ej+li)1

with u(.. iz) U(, itz). As above one can easily check that L y(), where

vr Is the solution of the equation v" 3u v with the boundary conditions v(") 1,

":':'1 "
.- Th 0eis ,1 u - UR 010- Spittingap v- Ito th s bu s m of order s * T , Hences , .-

and finall y oh that

)h-r3 ( Th measure..

Le sfxpit 1 (x .. 1 +2w on th"crce Cnsde hef"cto

-[v.) = (O1 2 )S= / ctt xsuC 3)+.a2T x+,01 ux1 +2w,-'"

0

afinally 
.

r2. o i LL t- 1)2T + ( I ) . j..t s

mNs Itea the olLondn I wistomited) The

•3. ar e .du

Pr po it o 2 .o ( Xl . .f) .. Ox )+ E +  °E ' . 'E .. ."E th s gk! k
man s tinatly o r sp ni g v ri b ei mi t d . T e

(2.8 Ljj+1 - + ( ) +0( ) • '-''4'



(3 .1 ) J S (x m)d ca - (2 w ) ' ( -X )(x(x , ) ".1

j4+1 1-1 ..-

We asem that xo - xk -2, xk+ 1 - + 21, go Eke Ck+1 "'*

Proof. Let all ratios (x1;-x)/(x,+l-xn) be rational xm+l-x -N X" Dy B._

Proposition 1

(-/2)- 1 ( (m/2) EN
; S~x,-)dt lie (2w) 2) )

MOM)

x 0/2/+1 - exp-- EhC'/m.Ej' a() )A()

'-I v v x+1 ); it....

where . 1,. (a)< A, ... the ,,, rtition, of the, circle ,i,,o .eual segment@ of ,.,,e nt:..

j+ 2 -

T/es. o the other hand

(3.2) i) , (x)d 1k' 1(211(/2 k1 .."::.i-...-1"

-k ( (-()/2 -.

S(X,.E )d iC20 (w

Rkl~vlX (x-xl/2)( .xj1) exp{- Eh(T/aC (a, l C a) O

: , " ..,2.

"," ~~The realtion (3.1) follows from the last two formulas. in the general case it is valid-.-.-'

because of the continuity of both sides. :i:::

Corollary 1. ef".-"

(3.2) Slx,tldg = a-ll 2w)lk/2 k (x -x 1/2.:..

V-1 V+" .

6 wth fome constant a. dctually, o aee y! ,(x ) . (k-( 2)/2 k.( +')/2 (.,. 1  .

Simple estimates show that .;,,

-1 1 . ,-15-

*-c " s(0,*sw,.)dC <

Corollary 2. The functions

(3.3) p(x,) -.. l2w).
2

- 1(xV+l-x v ) / ...x...).-"".....

are finite-dimensional densities of a probability measure du. ndeed, they are

-15-
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I :

continence and satisfy the agremont and the ncmlization conditions.

Let dw be a cditional Wiener measure, see (3), In the space of continuous

functions uhich vaniah at some fixed point % on the circles 6(f) - f(xo ) O 0, and

dv - dv x (2w) /2p(-d/)

is the measure in the space of all continuous functions.

Prc poiticn 3. 4p1  Is absolutely continuous with respect to aw and

ds1 (1 rZxdx+.1f(3( .4 2w)4 2 2 o

Proof. Let us dhooese a function f, a partition x0 < x 1 <...< xk < xo + 23 of the

circle and a set

x xc : .(f(x)- ,f(x)+ ) +

We asmum, tat Ixj ,-xj < e, Or - ...,#k. by (t3)

dp } - dV(us (u(%),...,u~zk)) S })

-(2w)
"(k+

l )/2 k "k "v0a V~v+ J 8z d

Using the definition of h and Theorm I we can obtain after siaple aoputations that
I(x,C) - exp(- 0k (+- )2/2(z -x ) - I J f4d,}(o(1))

when s+0. 2us

4 d(0) - ,(2w) Je,,(II f2 .(x . j f4dx) i(14(,.o(1,) .

Corollary. Ihe measure d 1I has a support In the space Lipte, a < 1/2.

• ,For the definition of the dp2  we consider functionals Aj and s

"v A6 + (A coo }y a sin vy)

Lot N cR 29+ 1 . Then by definition

dIA2 {v: (Ao,...,%12 .... N) I )=

-W ~Uj x{WA2 (w/2) Z (A2 +. 2 )~d

The dM 2  is a realization of the Wiener Measure. Xt has a support In the

space of genera2lsed functions
Lipj /2 " - Const + L €, !/ 0-•

-16-
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4. Invariance of the dUa

Let OWt be the flow defined by (0.1). First of all we intend to prove its

continuity.

Lemma 3. *(t) naps continuously the space LipS(81) x Lipa-1l () into itself,

Proof. consider two Cauchy problems

3+ u 0
tt xx

ult0 u (x) 6 Lips, utIt 0 - ve(x) 6 Lipa-'

and

Wtt - Wxx - 0, wit-0 uo, Wtlt-o Vo

If 0 < t < ir,

w(tx) (X++ 0 x-t) + 1 x+t v (y)dy
2 Tx-t 0

Clearly w 6 LiP, Wt e Lip
a - 1 and (w,wt) depends continuously on (Uswe). Lot r(t,x) -

u-v. Then

rtt - rxx + (r+w)3 . 0, rJt_ - rtJt.o - 0

and according to the Duhamel principle

8(______________ 3
(4.1) r(t,x) - - d j e(x-vt--e(x--t+T) [r(y,r) + w(y,r)1 dy .,."-.-

where e is the Heaviside function. The expression on the right hand side of (4.1) is a .... ,

contraction operator in a ball in C((O,t], Lip) when t is sufficiently mall.

Therefore (rirt) Lip x for sufficiently small t, and hence

(u,ut) e Lip x Lip . Now the assertion of the lem a follows from the group property of

O(t) and its invariance under the transformation t * -t.

o 0

Now we shall build the finite-dimensional approximation of 0(t). Let us divide the

circle into 2N+1 equal parts by the points yj- 2wj/(2N+I), j - 0,...,2. Loet tit nit "'.*-*...

j - 0,...,21, be some real numbers. We denote by %(4,x) the solution of the equation

-u 3 which satisfies the conditions UNlcy) - tit

V (TIx) -A + Z.(A4 con jy + 8 sin ly) .. '..
0 J

-17-
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Is on Imtexpolatim trigonometrical polymalf1 that is

(4.2) -Ac + tl(A oe(21S/(2WM1) + %~ sIA(2W1V(2111)

Clearly

(4.3) Zy n2 (26+1)A 2 + (20+1)/2 Z 2 +22
J-0(A j 0

Lot

1 20 2 25+1 % Cox) V

(4.4) t~,/,m~ i -
Let uWx a TAO. v(x) 6 Uip . 0 5 < 1/2. For a finitea-imenial apprximation of

these funct iose -take watrs

Ce(ux)) U(y).and nI K v~ - (no,... n M

with l defined by (4.2)l A and U are Fourier coeff icients of v. By r* weadmote

the reguliation operator ry(u,y) - (60 (u On(v)), i. In the interpolation operator, .

Lm4. last uW 0@C2  and v(x) 6C1 . Then

i 1*(t)rx(uQv) + @(t)(u~v) when U.

In the space CO0C.

Proof. going the formula of the variation of a functional with a free end* we obtain

that

The function u satisfies the eqain I- + 00/9). * olving this aquaticn

without the term OWN/) and estimating the remainder, we can easily obtain that

S, (2w/(2N.1))

Thus (4.4) can be rewritten in the form

(4.4')~ Jle (2w/(2N+1)) 0/) *

The initial conditions are C (0) U j and in (0) ,( l where V() Is the

partial som of the Fourier series of v. Ws have that v(v)(,j) - (Y) -0-4

-IS

L~



6 ) a0 uniformly with reAlc to j because v 4 C1 . The system (4.40) with such Initial

conditiee is a difference approximation for the problem

t _ am u - 0, u(OOx) - u(x), ut(Ox) _ v(x)

To finish the proof, we am apply a standard technique. In order to prove the convergence

of the solutions of the difference equation to the solution of the differential equation.

0

Consider a continuous non-linear functional F on He 0 Oa-3 (H is the Sobolev

apace) such that IF(uv)I ( 1. hon

J F(uv)d, - Ia do F [u(Cx), v(tx)]exp(-2wN/(2N+))ddAd3 .

The coordinates (A#B) and 11 are linearly dependent, therefore dhdm - ctld. Fron the

invariance o the measure d6d under the flow (4.4) It follows that
d J F (*3 (t)%pC), 3 (C))5XPC-WU 1 /C21Hl))d~dS

(4.5)
- dn ) F L(um(C).vC)ep(-2/(2W+1))dn .

The expression an the right hand side of (4.5) converges to ) F (u,v)dp when NI.W. By

the sam technique as in Lemas I and 3 (the spaces he and the Duhamal formula) It is

amn to veri y that i1 OlW(t)rV are uniformly continuous with respect to N as operators

fran Lipe * lip" Into e 0 Sm-1, 0 < a < 1/2. Taking into account Lams 4,

Ft[4(t)rv(u~v)I + F16(t)(utv)I, (uv) 6 Lip * Lip '  
*

By the Labequo theore the left hand side in (4.5) converges to J F (4(t)(u,v)1dP when

N3* . Therefore

j F(uv)dp - FetCt)(u'v) d1 A

The last forml mean the invarlance of do under f(t).

313, After sending the paper to the publisher, we discovered that the min results of

Section I - Theorem 1 and the formula (0.9) - were proved simultaneously, independently and

by diffe, st methods by Morlus Wodricki 19 *.
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